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Abstract

Understanding the neurological implementation of emotions
is a major research subject from biology to computer sciences
that, in the latter case, takes many shapes: from accurate
detection of human emotions to the emulation of plausible
responses to stimuli. There is, however, room for a more
bottom-up approach in which we would thrive to recreate
emotions from undifferentiated elementary building blocks.

In this article, we used virtual creatures that interact with their
environment through a low-level perception/cognition/action
loop to demonstrate their potential for fear responses. Em-
bedded in a physical environment in a typical prey/predator
setting, they develop strategies for foraging while minimiz-
ing their exposure to danger.

By monitoring the neural activities of these subjects, we
were able to highlight the regularities induced by an ES-
HyperNEAT encoding and their eventual mapping into “men-
tal states”. We further emphasize the potential of this ap-
proach by clustering these ANNs and showing their resulting
complexity in terms of conspecific identification, communi-
cation, and functional modularity. Indeed, through functional
equivalence across numerous topologies, we identify a fear-
related neural cluster that serves as a primitive defensive sur-
vival circuit.

Context
Emotions provide contextual information to better guide
individuals towards favorable regions of their behavioral
space. On this basis, fear is expected to result from preda-
tory defense systems (Ohman, 1986) intended to produce in-
centives in fight or flight situations. Indeed based on fear
“being caused by particular patterns of threat-related stim-
uli, and in turn causing particular patterns of adaptive be-
haviors to avoid or cope with that threat”(Adolphs, 2013),
it can be seen as an evolutionary advantage, increasing an
individual’s chances of survival. Especially in the case of
the early mammals, which were exposed to extreme selec-
tive pressure by a saurian-dominated environment, the abil-
ity to respond quickly and efficiently to a perceived threat is
of paramount importance to ensure continued survival. As
summarized in (Treccani, 2020), it has been argued that this

pressure persists nowadays most notably with the “snake de-
tection theory” (Van Le et al., 2013) which emphasizes the
influence of snakes on the evolution of the primate brain.

Combinations of neurological and cognitive studies have
shown that, in the human brain, fear relies on numerous
interconnected neural circuits (Ledoux and Brown, 2017).
While conscious fear results from their (partial) interactions,
each such circuit encodes parts of that feeling: the memory
of fearful events, unpleasant visual cues, or an individual’s
flight/fight tendency.

Indeed, thanks to extensive optimizations in complex en-
vironments, the animal brain is a marvel of modularity and
distributed computing. Researchers from the field of Arti-
ficial Intelligence have used such findings to promote simi-
lar levels of complexity either in terms of discrimination, to
provide emotionally aware virtual agents (Hendy and Farag,
2013; Bălan et al., 2019), or as a control mechanism that
would improve upon an agent’s plausibility. Classical ex-
periments in the latter setting involve a predetermined or-
dering of multiple modules in generally fixed topologies.
These modules aim to emulate specific regions of the hu-
man brain with varying levels of complexity (Armony et al.,
1997; Delgado-Mata et al., 2007; Lotfi and Akbarzadeh-T.,
2014). Furthermore, while these instances cover the con-
nectivist side of the argument, there is a similar investment
resting on the symbolist side, e.g. (de Freitas et al., 2007).

However, despite arguments in favor of bridging the gap
between biological brains and Artificial Neural Networks in
terms of shared characteristics instead of dividing capabili-
ties (Treccani, 2020), biologically-oriented studies of ANNs
are under-represented in the literature. This is even more
marked in the context of communication between grounded
virtual agents, for which emotions could serve as a facilitat-
ing means to improve joint fitness (Hesp et al., 2020).

The objective of this paper is thus to address the issue
of emergent brain structures in an artificial substrate in two
ways: a) does the use of unconstrained topology precludes
the production of modular neural clusters? b) if structures
do arise, how could they be described in relationship with
observed trends in biological brains?
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Figure 1: Morphological and neurological components of an agent. The location-dependent inputs/outputs are mapped onto a
Cartesian plane with coordinates in [−1, 1]2 for use with ES-HyperNEAT

Model
The creatures used in this experiment are elementary in their
composition: a circular body, a set of physical inputs (vi-
sion/audition), and a handful of actuators both for locomo-
tion (motors, clock speed) and interaction with neighbors
(voice). Owing to the straightforward nature of the exper-
iment, the metabolic and morphological aspects of these
creatures were drastically limited. In the former case, they
are endowed with a single monotonically decreasing en-
ergy reserve, filled at the beginning of each evaluation and
a metabolic clock in the range [c0, c1]. In the latter case,
the body plan is fixed to the central circular body of fig-
ure 1a with a genetically controlled color and none of the
additional artifacts. As a result, the only variable part of
their morphology is the position of eyes, controlled via sev-
eral angles (main angle α, relative angle β set to 0 in the
illustration and total width θ) and a precision parameter p.

The value of p is used to generate 2p+1 rays on both sides
of the creature’s front, as per the illustration, each producing
an RGB triplet. As such, these individuals “see” in a similar
manner to humans, albeit in only one dimension and with a
much coarser resolution. Still, as argued in (Treccani, 2020),
the process of trial and error experienced by such creatures
can produce useful insights into associated dynamics of the
biological substrate.

Auditory signals are another way through which these in-
dividuals can perceive their environment, although in this
case only the biotic component is concerned. Each ear re-
ceives inputs from the surrounding area on two types of
channels: one is dedicated to “noise”, i.e. with an unspeci-
fied emitter, while the other three correspond to vocal chan-
nels, i.e. voluntary communication. Due to a linear attenua-
tion effect, sounds are better perceived at close range result-
ing in both left and right ears receiving slightly different val-
ues for each stimulus, except in the case where the source is
collinear with the creature’s orientation. Although this lacks
the refinement of extent echolocation, the variation in input

levels can be leveraged to determine the relative position of
the emitter and derive appropriate responses.

On the effector side of the creatures, three types of out-
puts are used: motion, metabolic and vocal. The first type is
implemented as a pair of “motors” able to produce an ef-
fective output in the range [−1, 1]. In effect, this results
in individuals behaving in a tank-like manner through for-
ward/backward motion, on-the-spot rotation, and all alter-
natives in-between. The sole metabolic output is used to
control the “clock speed” c as defined by c(x) = x c1 if
x ≤ 0 and c(x) = −x c0 otherwise. This clock speed
is then used as a multiplicative factor of both passive en-
ergy consumption and motor strength, thereby equating low
values with a quiescent state and higher values with sprint
behavior. As the range [c0, c1] is variable through genetic
mutation, cumulative selection can favor specific directions
both in terms of amplitude and bias towards one end. Fi-
nally, the vocal effectors are decomposed between the chan-
nel of emission and the output volume thereby allow arbi-
trarily complex messages to be produced.

The connection between inputs and outputs is carried
out by an Artificial Neural Network based on the ES-
HyperNEAT algorithm (Risi and Stanley, 2012). The use
of a CPPN as the genomic basis for the neural controller
has been shown to be a very compact and efficient model
for geometric inputs/outputs. Furthermore, the Evolvable
Substrate extension alleviates the need to manually define
the hidden neurons, relying only on the connectivity pattern
to convert high-density regions of information into process-
ing nodes. This makes it possible to have structures emerge
as a result of evolutionary constraints which is a more bio-
mimetic approach to NeuroEvolution than fixed topology
networks. In this specific experiment, all nodes use a custom
soft-signed activation function1. Additionally, the CPPN has
a maximal connection weight of 3, uses a link expression
output, and also codes for a per-neuron bias in [−1, 1].

1The code for this experiment is publicly available on github

https://github.com/kgd-al


(a) 0+ (b) 1+ (c) 2+ (d) 3+

Figure 2: Left-hand side scenarios. The subject (S) is placed on the left-most border (in black) of a closed arena with a single
food source (G, in green) and a partially walled right-most section. The eventual ally (A) and predator (E, in red) are placed
near the goal and perform an endless patrol (bidirectional arrows). The visual and auditory ranges are displayed in the first case.

Evolutionary protocol
Given the objective of studying the emergence of fear on
an unbiased substrate, we devised a straightforward experi-
ment that pitted efficient foraging against avoidance strate-
gies. Through a classical evolutionary algorithm, individ-
uals were evaluated on 8 scenarios, each emphasizing dif-
ferent skill-sets. Figure 2 summarizes the left half of these
scenarios while the other half is obtained by axial symmetry
along the x-axis (e.g. in 0- the food is on the lower side).

In all cases, the subject (S) is placed on the left-most side
of the arena with its visual and auditory ranges (displayed,
in figure 2a, as disk slices and a larger disk, respectively)
not reaching quite far enough to instantaneously detect ei-
ther the food, other individuals, or central obstacle. In both
confrontation cases (1, 2) the other agent (A or E) is placed
near the food source (the goal G), leading to two possible
outcomes: either S boldly races for G, at the risk of encoun-
tering E, or it goes the long way around through the small
opening on the opposite side. In the last case (3), S is faced
with a simple choice: going for the ally or the enemy, given
that the goal is always on the former side.

The ally is based on the subject’s genotype with no modi-
fication: it possesses the same color and neural controller.
However, to provide dynamical conditions, its motion is
overridden so that it performs a linear patrol: if colliding
with an obstacle (wall, food, creature) the clone performs
a 180◦ rotation, otherwise, it moves forward at its maximal
speed. The rest of its neural outputs are left untouched, espe-
cially its vocal organs allowing communication both sponta-
neously and in response to auditory cues (e.g. produced by
the subject). The predator is a slightly different case as its
genome is fixed for all evaluations with forward-facing over-
lapping arcs of vision. In addition to the patrolling and ob-
stacle avoidance procedures, it also uses visual and auditory
data (in the same form as that obtained by regular individu-
als) to adjust its trajectory so that it can detect and ultimately
catch poorly performing individuals. To limit its threat level,
the maximum speed it can reach is capped to 75% of a crea-
ture’s base speed.

Thus each type of scenario favors complementary aspects
of the skill-set: foraging (0-3), conspecific recognition (1,3),

threat detection/avoidance (2,3). The life/dinner paradox
arises from the scoring methodology defined as follow:

score(e, d) =


−e if touched by the predator,
1− d if not touching the goal,
9e+ 1 if successful.

(1)

where e is the normalized remaining energy (time limiting
factor) and d is the distance to the goal. This produces a
cost/reward matrix, in the sense of evolutionary game the-
ory, where individuals have a defection strategy (ignoring
the goal), a positive outcome (reaching the goal, however
late), and a highly penalized negative outcome (being cap-
tured by the enemy). While providing evolutionary gra-
dients along which behavioral optimization can occur, this
piecewise evaluation favors adaptive solutions to the forag-
ing problem: retrieving the food while evading danger.

To promote robust behavior, evolutionary fitness is the
raw sum of an individual’s score in each scenario. This
allows for some error margin with initial generations typi-
cally only finding viable strategies for one specific type of
scenario. Cumulative selection however can capitalize on
isolated strategies to favor more all-round individuals which
show robust demeanor across all categories. This aggregated
score is used in conjunction with a novelty metric based on
the final positions across all evaluation types thus produc-
ing a vector in R16. Indeed preliminary experiments showed
that premature convergence on sub-optimal strategies (e.g.
only exploring the left side) was occurring at dangerously
high frequencies.

In terms of evolutionary parameters, we performed 50
replicates with varying seeds for the initial populations.
Each run consisted of at least2 1000 generations with a pop-
ulation size of 200 and no crossover. Four elites were con-
served across generations and selection was based on ran-
dom tournaments of size 4.

2Additional generations (up to 8 in practice) were allowed for
populations solely composed of empty ANNs, i.e. those for which
ES-HyperNEAT did not find valid hidden nodes



Type Periods
1 2 3 4 5 6

I ∅ A ∅ A ∅ A
II ∅ E ∅ E ∅ E
III ∅ E A E A E

Table 1: Distribution of presented stimuli in each type of
evaluation. A: Ally, E: Enemy, ∅: None

Modularization
While the exploration of neural structures both in-vitro and
in-silico has been the subject of extensive studies, these rely
on the result of millions of years of evolution, in the specific
conditions of biological life. Indeed either through analysis
of the neural pathways of the animal brain (Ledoux, 1998),
the use of identified key cerebral regions to produce plausi-
ble artificial behavior (de Freitas et al., 2007; Delgado-Mata
et al., 2007; Lotfi and Akbarzadeh-T., 2014) or mathemati-
cal approaches (Broekens et al., 2015), all such methodolo-
gies rely on the initial bias of our evolutionary history. As
previously argued, we postulate that the emergence of struc-
tures in an arbitrary substrate is not limited to the variations
around our biological example. Indeed, especially with such
highly regular ANNs, we can expect different regions of our
artificial brains to specialize in different types of stimuli.

To accurately detect such regions, we exposed each of
our champions to “canonical” situations. In every instance,
the subject is pinned in the center of an empty, wall-less
arena for 10 seconds (100 simulation steps). Due to the to-
tal lack of external stimuli, most networks remain quiescent
with next to no neural activation. Following this period, the
subject is faced with one type of stimulus (ally or enemy
depending on the evaluation) for an additional 10 seconds.
This brutal switch from peaceful to potentially hostile condi-
tions induces a change in regime in most networks, resulting
in an observably different state.

The pattern of presented stimuli in each three types3 of
evaluation scenarios is summarized in table 1. Thanks to
these reproducible conditions, we were able to tag times-
tamps with either the presence or absence of a particular
type of input allowing precise monitoring of the activation
state of each of a given individual’s hidden neurons. Us-
ing this information, every neuron’s time series is subjected
to a one-sided Mann-Whitney test to determine whether it
was significantly more active in response to specific stim-
uli4. This procedure is repeated across all three evaluation
scenarios, thereby coupling each neuron with a tag specify-
ing to which (if any) stimulus it responds to. Thus, starting
from an arbitrarily dense ANN as depicted at the top of fig-

3I,..., III as opposed to evolution scenarios 0,...,3
4The p-value threshold was corrected for the network size n by

comparing against 0.05/n

Intersection

ally both enemy
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Figure 3: Procedure for producing a modular ANN based on
individual neurons’ activity patterns in canonical conditions

ure 3 one obtains three different patterns of differential ac-
tivation across the network (middle row). Each tag is then
combined to produce an aggregated version of the network
where modules abstract a subset of its topology while main-
taining its functional partitioning. The aggregation proce-
dure is performed through an intersection operator, meaning
that for a neuron to belong into the enemy (red) module, for
instance, it has to be found significantly activated in both
types II and III evaluations.
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(e) Dangerous conditions (2+)
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Figure 4: No enemy-dedicated neurons and (almost) no impact of predator presence on behavior

In this manner, one can extract meaningful structures
from a seemingly chaotic distribution of neurons. In the fol-
lowing sections, we will leverage this modular transposition
to better describe mid-level dynamics which will allow for
the investigation of “mental states”.

Neural characterization of fear

Thanks to the transformation of an arbitrary neural network
into a functionally partitioned version, we can more eas-
ily map observed behavior with modular activity to deter-
mine whether or not specific types of processing occur in
the network. While the clustering procedure could be per-
formed for any stimulus encountered by the subjects, we
focus mainly on the two types illustrated in the previous
section: enemy (predator) which is associated with nega-
tive outcomes and ally (clone) which is more ambiguous as
it shares many characteristics with the former case. More
specifically, we arbitrarily define the enemy-focused mod-
ule as processing the “fear” response of the individual given
that, in this case, it is the sole source of danger. However,
mapping the other modules is a more delicate task: while
neurons in the generic module can be seen as the background
processing center of the individual (food, obstacles ...) there
is no clear interpretation for neurons only associated with
the ally or with both types of stimuli. Informally, we could
describe the former as encompassing the creature’s “hope”
of a positive outcome, given that the presence of an ally is
always associated with proximity to the food (whereas the
enemy is only next to the goal in half the scenarios). To bet-
ter understand how this clustering procedure streamlines the

reading of “emotional” responses we illustrate two opposed
reactions: bold and fearful (figs. 4, 5).

In the former case, one can see that the neural network
(fig. 4a) is of moderate density (35 hidden neurons out of
a theoretical maximum of 84) and connectivity (17% of po-
tential connections are expressed). Observing this individu-
als’ behavior on scenarios where either the ally or enemy is
present shows very little difference in terms of trajectories
(figs. 4c,4e) and speed (data not shown). Indeed the “bold”
characterization is based upon this distinct lack of behav-
ioral differences between hospitable and dangerous condi-
tions. As illustrated by the modular version of the ANN, one
can see that such boldness is reflected in the functional par-
titioning: no neurons were found significantly more active
in the presence of a predator, either by itself or intertwined
with the ally stimulus. Both of the detected modules are of
comparable size (40/60% in favor of the ally), highlighting
the cognitive investment of this individual into conspecific
detection/identification. Indeed, correctly determining the
ally’s position can drastically increase efficiency in scenar-
ios of type 1 and 3 with the neurons in the remaining module
providing a fall-back mechanism in both other cases. More-
over, this lack of reaction to the presence of a predator is
also clearly visible by comparing the activity levels of the
detected modules in both types of scenarios (figs. 4d,4f):
in the former, encountering the ally induces significantly
higher levels of activity in the associated module whereas
in the latter case no such increase can be observed.

In the case of the fearful creature of figure 5, the trends are
inverted with almost twice as many neurons and a denser
connectivity pattern (25%). The difference is much more
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Figure 5: Large predator-focused module and exhibition of behavioral and neuronal fears.

marked when comparing the foraging capabilities: while it
performs with similar efficiency when faced with an ally,
it favors defection in the confrontational case: instead of
aiming for the potentially high reward associated with food
collection, it prefers to settle for the safer, albeit markedly
lower, proximity-based reward. Such a strategy ensures that
the penalty for capture is avoided which is a conservative ap-
proach to this evolutionary game. As could be expected, this
fearful demeanor is associated with an especially large pro-
portion of neurons (57%) linked with the predator stimulus.
Unlike the previous individual, a very small bimodal module
was also detected that responds to both ally and predator in-
puts. Due to its limited size (2 neurons), it is unclear whether
or not it has a crucial role in the overall dynamics of the net-
work and, is thus displayed in dotted patterns on figures 5d
and 5f.

However, the dynamics of the other three modules are
much clearer thanks to the normalization resulting from their
larger size. On the one hand, when comparing the activity
patterns of the neutral and ally modules, one can see that,
following an initial decrease in the first steps, it quickly set-
tles into a semi-stable state especially visible in the type 2
scenario. On the other hand, the evolution of activity lev-
els in the predator-focused module is much more diverse
with the relatively high, albeit oscillating, values observed
in the hospitable case being replaced with a quickly increas-
ing trend when in the presence of the predator. Numerically
speaking, around the 50th time step this module has con-
verged onto its maximal output of 0.8 whereas such a value
is only reached two times in the, admittedly shorter, hos-
pitable case. We can also note that the high stress level ex-

perienced by the individual only starts to decrease at the very
end of the evaluation, potentially presaging a relaxation pe-
riod where it could have resumed its foraging. However, due
to the energy constraints of the protocol, it failed to do so in
time to reap any benefits.

Lesion study
While we identified, on some networks, a specific subset of
neurons that could reliably be assigned to the enemy, it re-
mains unclear whether such a module is responsible for any
form of mental state. Indeed it might only encode for a set of
navigational procedures that are relevant when faced with a
predator5. Thus, to address this question we first turn back to
our previously observed fearful individual and perform addi-
tional evaluations of its behavior when two types of lesions
are performed upon its network.

In the first case, its visual inputs are impaired by selec-
tively removing all connections between the neurons receiv-
ing the red input and those of the predator module. The sec-
ond case is similar, only we remove the connections from the
two neurons responsible for perceiving noise (i.e. non vocal-
ized sounds). These intrusive manipulations are designed to
be as limited as can be, indeed they do not preclude preda-
tor detection by the remaining portions of the creature’s net-
work: only direct input into the investigated fear center.

As illustrated by figure 6, there is a notable change in
strategy when compared with the initial choice of defection.

5Although one could argue that it would be one manifestation
of fear, as in flight/fight or freezing behavior. See initial quote from
(Adolphs, 2013).
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Figure 6: Behavioral and neural variations when subjected
to partial visual (left) and auditory (right) lesions in the same
conditions as figure 5e.

Interestingly, both types of lesions result in drastically dif-
ferent variations of the outcome. When visually impaired it
backtracks before diving directly towards the food source,
only by doing so it fails to evade the predator. Its neural out-
puts, especially in the red module, paint a similar picture to
that observed through its behavior: the lack of visual infor-
mation being fed into the aforementioned module results in
noticeably lower activation levels which can be interpreted
as a lower fear response. Oppositely, in the case of audi-
tory impairment, its outcome is better than the base version
thanks to a relaxation occurring around the 150th time step.
We hypothesize that, in this particular instance, the down-
ward trend observed at the very end of the unmodified con-
ditions was facilitated by the lack of noise perception. This
induced a faster turnabout through which the individual was
able to perform more efficiently or to put into more psycho-
logical terms: the fear-induced freezing state, conditioned
by auditory cues, was markedly lower when disconnecting a
selective region of the creature’s brain.

Based on these observations, one can conclude that, in the
case of this specific individual, the predator module behaved
as a defensive survival circuit. Indeed, negatively associated
inputs (red color, noise) induced an increase in activity while
targeted lesions decreased the overall fear perception while
preserving the remaining functionalities: in both cases it still
show appropriate foraging behavior.

We tested whether this individual’s reaction was a ran-
dom, isolated event by performing the same evaluation (for
scenarios of type 2 and 3, i.e. with a predator) on all 43
members of our population that exhibited a predator mod-
ule, as summarized in table 2. In the “natural” conditions we
find that only lesions to the auditory inputs induce a statisti-
cally significant variation in the activation level of their fear
center. However, one must recall that the individual’s ini-
tial strategy can provide a very strong bias as, for instance,

Lesion Scenarios
Evolution Control

Visual .122 .009
Auditory .001 .000

Table 2: Variations in fear center activation in “natural” ver-
sus controlled conditions. All but one (in gray) are positive
under a 0.05 p-value threshold (Wilcoxon test)

Lesion Reaction
Positive Negative Irrelevant

Visual 16 27 7Auditory 35 8

Table 3: Responses to lesions of the fear center. The impact
is markedly higher with auditory lesions.

they do not necessarily make visual contact with the enemy.
To alleviate this problem we also performed the comparison
on type II and III scenarios which correspond to the con-
trolled conditions used for the clustering procedure. In this
case, we find that there is a strong reaction to both types
of lesions, demonstrating that this fear center behaves in a
modular manner by parsing specific inputs. Moreover, we
also evaluated each individual in isolation6 to determine be-
havioral classes and, as can be seen in table 3, found that
subgroups exist in the population with respect to their reac-
tion to lesions. Thus, while not explicitly required by the
experimental protocol, we have observed the emergence of
fear-related structures in an artificial neural substrate for a
fairly large number of independent runs.

Conclusion
To investigate whether structural similarities with the bio-
logical brain could emerge from an artificial substrate, we
devised an experiment in which creatures only relied on
a low-level perception/cognition/action loop. By using a
highly indirect encoding, namely ES-HyperNEAT, we were
able to abstract the computational units (hidden neurons)
both in terms of position and density. Additionally, the con-
nectivity patterns of such neural networks, being also en-
coded in a similarly indirect manner, were capable of highly
regular topologies using geometrical (e.g. left/right motor)
and modal (e.g. red, green, or blue color) information. Var-
ious strategies emerged from the evolution in a paradoxical
setting which required a balance between aggressive forag-
ing and conservative exploration. As observed, not all final
creatures were concerned with the presence of a predator
some, instead, relying on boldness to reach the objective be-

6under a threshold of p < 0.0001 to correct for the number of
evaluations



fore being captured.
However, a significant portion of the studied population

did show varying degrees of cautiousness either by avoiding
confrontation or by relying on round-about trajectories. By
using a clustering procedure, partly inspired by the method-
ology of fMRI, we were able to abstract from the neural
layer into a higher, functional, layer which was instrumen-
tal in highlighting the diversity of dynamics exhibited by the
population. Thanks to this combined approach we were able
to assert that it is possible to obtain individuals which ex-
hibit fear-like behavior through the emergent production of
neural structures.

Furthermore, by selectively disconnecting threat-related
inputs from our investigated “fear center” we observed a sig-
nificant neural/behavioral change with respect to the preda-
tor with little impact on their other capabilities (e.g. for-
aging). While this confirms that a modular organization
can spontaneously appear in an unconstrained, undifferen-
tiated ANN, it is even more interesting to note how well
this fits into Higher-Order Theories of consciousness. In-
deed the information deleted by such lesions corresponds
to the “first-order representation of the threat” (Ledoux and
Brown, 2017) which, in such elementary creatures, is the
sole order of information processing.

We can thus conclude that a) functional clustering can
spontaneously emerge, even without explicit selection b)
this modularity shares key characteristics with the biolog-
ical brain notably with respect to the separation of inputs.
This further highlights the potential of artificial neural net-
works both as a tool to better understand our genetic heritage
but also as the means to produce autonomous artificial life-
forms.

In future researches, we plan on deepening our under-
standing of the evolutionary dynamics leading to the emer-
gence of such higher-level structures, most notably by in-
creasing the dimensionality of our ANNs into the third di-
mension. Although an order of magnitude harder to accu-
rately analyze, the gain in expressive power should facili-
tate spatial clustering of inputs/outputs. Additionally, in the
current setting, modularity was an expected side-effect but
was not expressively enforced, or even encouraged. Thus,
we plan on investigating the differential benefits of incor-
porating the connection length into the CPPN inputs, as
this was shown to promote short-length connectivity thereby
further increasing the similarities with the biological brain.
These technical improvements are expected to be instrumen-
tal in follow-up studies on emotional responses, the scope of
which should encompass not only fear but also happiness
and aggression.
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