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Abstract

Artificial Neural Networks have been crowned with
tremendous successes in recent years, with ever wider
and more complex ranges of applications. However,
they, too often, result from a costly human design pro-
cess relying as much on expertise as on trial and error.
While the field of NeuroEvolution provides a comple-
mentary view point through emergent, self-designing
ANNs, the “black-box” properties of the resulting net-
works is further magnified. Still, by once more taking
inspiration from biology, we may extract meaningful
information from ANNs by using similar approaches as
those used for biological brains.
In this work, we study the emergence and functional al-
location of neurons in a light communication task. By
having a robot transmit visual information, through
vocal channels, we enrich the existing literature with
new types of stimuli, namely those related to role (emit-
ter/receiver). Through Virtual functional Magnetic
Resonance Imaging (VfMRI), we observe that evolu-
tion only favored specific kind of input-processing mod-
ules. Combined with a strong presence of jack-of-all-
trades modules, this demonstrates the balancing act
between specialization and generalization in Artificial
Neural Networks with emergent topologies.

Introduction
One fascinating application of Artificial Neural Net-
works (ANNs) is as bio-mimetic engines that can repro-
duce critical characteristics of the animal brain, thereby
paving the way towards its understanding (Treccani,
2020). However, while current ANNs can reach human
performance on multiple abstract tasks such as playing
Atari games (Mnih et al., 2015) or knowledge restitution
(Bubeck et al., 2023), we are still far off Artificial Gen-
eral Intelligence (AGI). Some authors caution against
assigning cognitive capabilities to Machine Learning
agents, stating that “task-specific performance can [not]
be treated as manifestation of General Intelligence”
(Kadam and Vaidya, 2021). In parallel, it is argued
in (Zador, 2019) that biological learning is not the re-
sult of clever algorithms but is likely, instead, to depend
on a genomic bottleneck responsible for a brain’s rapid

learning capacities. The author states that “AI is far
from achieving the intelligence of a dog or a mouse, or
even of a spider [...]” at least in terms of general intel-
ligence.

The research field of NeuroEvolution provides a way
around this problem by taking inspiration not only
from the biological brain but also from biological evo-
lution (Stanley et al., 2019). Indeed, we argue that
reaching the intelligence level of e.g. a spider requires
grounded neural cognition to study, for instance, the
evolutionary dynamics of vision (Olson et al., 2016) or
communication (Kadish et al., 2019). The latter case
could even lead to “natural” (non-)verbal communica-
tion with stepping stones including mimicking the bee’s
waggle dance (Campos and Froese, 2019) or primordial
social dynamics (Ito et al., 2013).

The drawback of this approach, however, is that, by
relinquishing control over an ANN’s architecture, we
further increase its inexplicability. While there has been
increasing work done on relating Evolutionary Compu-
tation (EC) and Explainable AI (XAI), there is much
that can be done for NeuroEvolution (Bacardit et al.,
2022). Current investigations have covered different ar-
eas such as the evolution of explainable Hebbian learn-
ing rules (Mettler et al., 2021; Yaman et al., 2021) or in-
terpretability through self-attention (Tang et al., 2020).
However, neurons, their connectivity patterns and the
role they occupy in a network have received far less at-
tention, even though topology has been shown to be an
important factor (Gaier and Ha, 2019).

In this work, we set out to study emergent neural
structures in a light communication task where cooper-
ation is essential. By placing two robots in disjointed
arenas and having one communicating visual informa-
tion to the other, we investigate whether individual neu-
rons would tend to occupy specific functional niches.
Formally the hypotheses are that the neurons will be
separated by:

H1 function (visual versus auditory processing)
H2 role (differential activation based on situation)
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Figure 1: Geometrical relationships between the robot’s inputs, outputs and neurons. Left, the robot has both vision
(green) and audition (blue). Eyes are placed at the front with overlapping fields and ears are on either side. Motors
are placed closer to the center and the mouth (for vocalization) is at the front. Right, the physical positions are
replicated in the neural substrate w.r.t. bilateral symmetry and relative placement.

The paper is organized as follows: Model presents
the robots and ANNs, while Virtual fMRI introduces
the methodology for extracting functional partitions.
We then describe the Experimental protocol and some
Population-level results, before detailing the actual
Functional partitioning induced by this experiment.

Model
The virtual robots used in this experiment are based
upon Godin-Dubois et al. (2023), without the mor-
phological components, and are controlled by an ANN
derived, through ES-HyperNEAT (Risi and Stanley,
2012), from a three-dimensional substrate1.

A brief working knowledge of the platform is pro-
vided here. As illustrated in Figure 1a, these robots
are solely composed of a circular body endowed with
low-level perceptions and actions. Audition is imple-
mented, in this work, via two channels (noise, resulting
from motion; and explicit vocalization) with attenua-
tion so that echolocation can emerge. Vision is per-
formed through 7 ray-casts per eye, fanning at π/2,
which form two rudimentary retinas. These parame-
ters give the robot a moderate-grain forward facing vi-
sual field which is used to populate the corresponding
neural layer with the RGB components of the first col-
lided object. Actions are similarly elementary with both
motors allowing for back and forward motion while vo-
calization is controlled through volume(o) = max(0, o)
where o ∈ [−1, 1] is the corresponding neuron’s output.

Emerging topologies
All of a creature’s neurons are geometrically positioned
in a 3D substrate, bounded in [−1, 1]3, with two regions
having hard-coded characteristics: the input and out-
put planes placed at y = −1 and y = 1, respectively

1Source code: https://github.com/kgd-al/Splinoids

(Figure 1b). On the former, one neuron is allocated to
each frequency (noise/voice) and ear while maintaining
bilateral information. The retina is similarly modeled
by a larger collection of neurons, each encoding the spe-
cific red, green or blue component of a particular ray for
a particular eye. The angular position of the ray’s end-
point is translated into the x coordinate of the neuron,
while the color component gives the elevation z. The
output plane comprises the three effective neurons: two
for the motors and one for vocalization.

The rest of the neural controller is obtained through
the ES-HyperNEAT algorithms. The core component
of this methodology is a Composite Pattern Producing
Network (Stanley (2007), CPPN) which is an Rn → Rm

mathematical function composed of numerous elemen-
tary processing units (sin(x), ex, |x|, ...). This function
is then evolved in the same manner as the neural net-
works from NEAT (Stanley and Miikkulainen, 2002).
Because direct encoding is not scalable to higher dimen-
sional spaces, this CPPN is used indirectly, to describe
connectivity patterns in a substrate.

As described in HyperNEAT (Stanley et al., 2009),
the use of such an encoding leverages the CPPNs’ ca-
pacity to capture repetition, symmetries and repeti-
tion with variations. However, one drawback of Hy-
perNEAT is that it still requires that the experimenter
manually places every hidden neuron, preventing any
evolutionary adaptation. By opposition, the Evolv-
able Substrate extension (Risi and Stanley (2012), ES-
HyperNEAT), takes advantage of the CPPN’s connec-
tivity pattern to automatically instantiate hidden neu-
rons at locations of “high informational density”.

This way, a single genomic component of unbounded
complexity is responsible for the indirect encoding of
the whole of the creature’s brain: from the placement
and density of hidden neurons to the topology and even-
tual emergence of neural structures.

https://github.com/kgd-al/Splinoids
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Figure 2: Producing a modular ANN based on individual neurons’ activity patterns in canonical conditions. Left: a
black box of hidden neurons and dense connections. Middle: we subject the creature to “simple” stimuli and note
which neurons respond. Right: per-neuron response is aggregated, depending on the type of stimuli. For ease of
reading the ANNs depicted here are displayed in a 2D substrate instead of the 3D ones used in this work.

Virtual fMRI
To extract behavioral clusters, we use a procedure
inspired by functional Magnetic Resonance Imaging
(fMRI). In short, we subject an individual to a specific
stimulus for pre-defined periods and note which neurons
respond. We can then provide a functional mapping of
the creature’s brain according to the studied criteria
thus streamlining subsequent investigations.

Indeed, whether through analysis of the neural path-
ways of the animal brain (Ledoux, 1998), the use of
identified key cerebral regions to produce plausible ar-
tificial behavior (de Freitas et al., 2007; Delgado-Mata
et al., 2007; Lotfi and Akbarzadeh-T., 2014) or math-
ematical approaches (Broekens et al., 2015), numerous
methodologies have been devised to understand and
mimic the biological brain. We argue, however, that all
such approaches rely on the initial bias of our evolution-
ary history whereas artificial intelligence, explainable
or not, could span from unexpected convergence of dif-
ferent factors. Especially with the highly scalable and
geometry-aware ANNs produced by ES-HyperNEAT we
can expect the resulting brains to exhibit natural pat-
terns such as bilateral symmetry or partitions.

As introduced above, to accurately detect functional
mapping between stimuli and neurons, we subject an
individual to an alternating stimulus, in controlled con-
ditions. In this experiment, we investigate modular
clustering from two points of view: perceptions (vi-
sion/audition) and role (emitter/receiver). In all cases,
the conditions are identical with only the type of ap-
plied stimulus changing between evaluations. Each in-
dividual is thus pinned (no movement allowed) to the
center of an empty, wall-less arena. We expose the in-
dividual to the given stimulus for 2 simulated seconds
(50 timesteps) followed by a relaxation of equal dura-

tion without said stimulus. This pattern is repeated
3 times resulting in 150 observations with and with-
out the stimulus, thereby producing a dataset of dif-
ferential activation. We then compare, for each neuron,
their states depending on either the presence or absence
of the studied stimulus via a one-sided Mann-Whitney
test. All neurons that are found to have statistically
different dynamics are then tagged as processing this
stimulus, independently of their position or connectiv-
ity. When rendered with arbitrary colors, this allows
for the visualization of functional areas (Figure 2).

Depending on the objectives of the given evaluation,
the ANN is subjected to different classes of stimuli
which are then aggregated. Subsequently, we generate
modules from similar neurons depending on the asso-
ciated flags. If these are null a default module is gen-
erated corresponding to the neurons unrelated to the
specific scenario. Those who only responded to a sin-
gle stimulus are rendered with a single color whereas
those with multiple flags use a combination indicating
their different functional responsibilities. To show the
amount of aggregated items, module sizes are linearly
scaled according to the number of neurons they ab-
stract and inter-module connections are logarithmically
scaled based on the number and weights of the under-
lying axons. Thanks to this procedure, we can observe
the dynamics of an arbitrarily complex ANN via the
prism of specific stimuli. The underlying network is left
unchanged: the modular version merely provides the
necessary perspective to monitor emergent higher-level
structures and behavior. Furthermore, unlike alterna-
tive approaches, this methodology does not suffer from
combinatorial explosion (Velez and Clune, 2016; Ghor-
bani and Zou, 2020) and does not require additional
training (Csordás et al., 2020).
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Figure 3: Environmental conditions for the evaluation of communication. The emitter (E) is placed in front of an
object of a given color. The receiver (R) must reach the object of the same color on its side of the arena. To do so, E
must vocally encode the color so that R can identify the correct target. Individuals are evaluated on all permutations
(sub-tasks) of left/right-hand side configurations.

Experimental protocol
Unlike previous applications of these robots on forag-
ing (Godin-Dubois et al., 2021) or competition (Godin-
Dubois et al., 2023) tasks, the experiment described
here focuses on collaboration in homogeneous pairs of
robots. As illustrated on Figure 3, one robot (E) is
placed on the right-hand side with a single-colored ob-
ject while its counterpart (R) is always faced with two
objects. The goal in each sub-tasks (a-d) is for the re-
ceiver to touch the object of the same color as the one
seen by the emitter (positive reward). Naturally, the
only way for this to happen is if the emitter transmits
to its teammate the color of said object.

Evaluation of a single sub-task t is given by ft as:

ft(E, R) =


1 + 0.5

∑
i∈{E,R} energy(i)

if R is right
−1 wrong

1 − dist(R) otherwise

(1)

where energy(i) is the normalized energy reserve of
robot i at the end of the evaluation and dist(i) is the
distance between i and the correct object. Addition-
ally, we reject invalid robots: those that either have
no hidden neurons or that stay mute throughout the
evaluation. The global fitness is then derived by aver-
aging scores across all 4 sub-tasks. As both emitter and
receiver share the same genotype, they also have identi-
cal ANNs requiring them to recognize, in some fashion,
their role based on auditory/visual cues. However, to
ensure that the emitter can see the target color, it is
forced to remain immobile.

The energy term in Equation 1 is devised to provide
a smooth gradient of improvement, as finding a solu-
tion that correctly reaches all objectives is only half the
goal. A secondary objective is optimizing for energy ef-
ficiency which in this case includes axonal length and
neural/motor/vocal activities, by order of importance.
This is implemented by increasingly high metabolic
costs to provide an incentive towards small, locally con-
nected ANNs and parsimonious dialogs.

In this context, the expected high-level behavior
is relatively straightforward: E should emit a color-
specific vocal signal to indicate to R which color to look
for. Indeed, both individuals only have a partial view of
the game state requiring explicit sharing. Furthermore,
we could expect, based on the energy requirements, that
this communication would be one-directional with the
receiver staying mute to preserve its reserves thereby
increasing the joint fitness.

Populations of 200 individuals are evolved for 1000
generations with a Pareto-based tournament selection
using the previously defined fitness (Equation 1) and a
novelty metric. The latter takes into consideration en-
ergy expenditure for neural, motor and vocal activities
as well as the mean and deviation of vocal patterns.
One elite per criteria is preserved across generations
and a total of 50 independent runs are conducted.

Population-level results
Overall, the evolved champions display efficient behav-
ior for reaching the correct object. Thus, to put things
into perspective, this section will address a few general
points related to behavioral evolution, success rate and
the ANNs.

A recurrent pattern, as illustrated in Figure 4, in-
volves discovering independent solutions to each sub-
task and integrating them, without loss of performance.
In the first generations, the fittest individuals are those
that get closer to the left side of the arena, thanks to
the gradient provided by the last case of Equation 1.
Building upon that state, individuals exhibit some di-
vergent behavior with the general case still implying
forward motion and an additional alternative: either
going for one side of the arena or directly towards one
object. The next step involves exploratory trajectory
variations, occasionally resulting in erroneous collisions
(e.g. Figure 4c), leading to an additional object be-
ing reached. Similarly, the third object is often found
in early generations most efficiently when only minor
adjustments of an existing trajectory are needed.



(a) Initial solution - Gen. 4 (b) First contact - Gen. 18

(c) First error - Gen. 24 (d) 75% mark - Gen. 32

(e) Perfect score - Gen. 848 (f) Final solution - Gen. 986

Figure 4: Cherry-picked example of strategy evolution. Starting from an unbiased state (a), the first object is reached
by arbitrarily going one way (b). This solution is re-used in other cases, which can induce erroneous behavior (c).
Three tasks are completed successfully as early as generation 32 (d) but it takes until generation 848 for a perfect
scoring strategy to be found (e). Following changes are minimal until the end of the evolution (f).

However, the robots found it surprisingly hard to im-
prove upon this state. For instance, in Figure 4e it took
more than 800 generations to find a functional solution
for all 4 permutations. During this time, the other tra-
jectories remained by and large unchanged except for
the speed at which the object is reached. In the lat-
est generations, the pattern is repeated with only slight
variations in speeds but not in the general trajectories.

On Figure 5, which generalizes these observations to
the whole sample, we can see that the first two steps are
completed extremely quickly with a median of 7.5 and
and 13.5 generations for success rates of 25% and 50%,
respectively. The same holds true for the third step as,
although requiring more generations, most runs manage
with less than a hundred offspring (median of 66). Con-
versely, reaching the perfect score is not only difficult
for the previously shown lineage as we can see a very
different trend to the other steps: the median is now
at 479 with the fastest individual requiring about 50
generations. Furthermore, this only accounts for 46%
of the replicates as the remaining half did not succeed
in collecting objects in more than 3 of the sub-tasks.

Neural networks
In terms of broad neural implementation of this com-
munication task, one recurring feature is that the neu-
ral networks are of very limited size. Indeed, 76% of
the sample is composed of networks between 4 and
8 neurons. Half of the remaining networks comprise
more than 300 neurons each, interlinked by thousands
of connections. As these ANNs have a relatively con-
stant connectivity density, this results in a similar ax-
onal distribution. Values are more dispersed as, unlike
the neurons, they are not subjected to threshold effects.
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Figure 5: Violin plots of the number of generations
needed to reach a specific success ratio. While it is
almost trivially easy to reach the first two objects, get-
ting to the third one proves more problematic. This is
further magnified for the 100% success rate.

As a consequence of ES-HyperNEAT’s octree-based
node discovery algorithm, neurons tend to be gener-
ated in bulk. Thus the simplest network is one com-
posed of exactly eight neurons resulting from a single
division of the octree’s root: a pattern followed by 38%
of this sample’s ANNs. In practice, this can be re-
lated to the CPPNs themselves which are responsible
for the NeuroEvolutionary process. While there was no
relationship detected between the ANNs’ size and the
number of generations required to reach a perfect score,
the opposite occurred for the CPPNs. Although with
only moderate intensity, a correlation was found be-
tween the number of nodes/links contained in a CPPN
with the number of generations taken to reach a perfect
score. For node and links, this correlation was at 0.45
and 0.61, respectively, while only considering those runs
that managed to get to all 4 objects. From this, we can
gather that genetic bloating impeded generalization.
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Figure 6: Module distributions by type. Top, the frequency of occurrence of a given module in the population.
Middle, the proportion of the neural network devoted to said module (i.e. its dominance). Bottom, the fitness of
individuals with a given module type. The highest four medians are highlighted in red and, whenever possible, labels
represent the simplified name of a stimuli class (e.g. V instead of VrVe). Specialized modules V and A are both
frequent and dominant while r and e are not. Generalist (Totipotent, All) modules are, additionally, significantly
beneficial.

Receiver Emitter
Visual V 0

r V 1
r V 0

e V 1
e

Auditive A00
r A01

r A00
e A01

e

A10
r A11

r A10
e A11

e

Table 1: Stimuli set. Visual stimuli V ∗
∗ consist of show-

ing one of the agent’s initial situation. Auditory stimuli
Ai

∗ involve playback of a communication pattern in the
corresponding scenario i.

Functional partitioning
The question addressed by this work lies not on whether
the creatures succeeded at the task but rather on the
neural properties that allowed them to do so. To inves-
tigate this point, we subject all final individuals to the
virtual fMRI procedure with the set of stimuli enumer-
ated in Table 1.

As they only possess two types of inputs, the set of
available stimuli is quite straightforward. To ensure
sufficient coverage of the various inputs the creatures
might process, we enumerate every possibility. For the
emitter’s visual stimuli V i

e this corresponds to present-
ing a single object either blue (i = 0) or red (i = 1).
Similarly, for the receiver’s stimuli, V i

r references hav-
ing two objects in one of the two permutations: red on
the left and blue on the right for i = 0 and, conversely,
blue on the left and red on the right for i = 1.

The case of auditory inputs is more complex as they

not only differ from one run to the next but they also
exhibit drastic variance both temporally and between
teammates. To reduce the risk of processing artifacts
while still providing sufficient stimulation to activate
the relevant neurons we considered each sub-task inde-
pendently. Thus the stimulus Ai

a relates to the auditory
environment of agent a in sub-task i.

The problem now becomes one of extracting a mean-
ingful audio sample from said sub-task, a trivial task
when the teammate is continuously speaking but not
so for the more parsimonious. To solve this we define
the sample S = (si) from the vocal output V = (vi) of
its teammate as:

t0 = (i/vi > 0 ∧ 0 ≤ i < 50 ∧ ∀j < i, vj = 0)
t1 = (i/vi > 0 ∧ 0 ≤ i < 50 ∧ ∀j > i, vj = 0)
Ŝ = (vi/t0 ≤ i ≤ t1) ∪ (0)
S = (Ŝi mod |Ŝ|)0≤i≤50 (2)

which, informally, consists of looping the vocal out-
put’s first two seconds after removing silences at the
beginning and end. In this manner, we ensure that all
individuals can be evaluated with such stimuli: only
a single instance exhibits a mute agent in one specific
evaluation scenario. From this, we study the modules
resulting from the union of similar elementary stimuli as
shown in Table 1. For instance, module Ve corresponds
to neurons found sensitive to the presence of a single
blue or red object while Ar would be the neurons found
responsive to auditory inputs similar to that produced
by the emitter.
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Figure 7: Sample of modular ANNs from the best-performing individuals. (a,d) Numerous tri-modules. (c) Both
visual and auditory specializations. (b) All stimulus-specific modules interacting with more generalists ones.

Specialization: In the context of this study, a spe-
cialized module is one that processes either a type of
sense (vision, audition) or a specific role (emitter, re-
ceiver). As summarized in Figure 6, two of the most
predominant types of modules are those related to vi-
sual (V ) and auditory (A) processing indicating that
evolved neural networks tend to partition the neurons
between the tasks, validating hypothesis 1 (H1). At
the same time, they only monopolize about a quarter of
the neural capacity making sensory input an unobtru-
sive part of the network. Conversely, modules related
to role (r, e) are infrequent, leading to the rejection of
hypothesis 2 (H2). Over-specialized (stimulus-specific)
neurons are also present in somewhat low numbers es-
pecially for audition.

Generalization: By opposition, a generalist module
is one that process different types of inputs (here three
or more). Surprisingly, the totipotent one (All) occurs
in 72% of the population and is the most dominant of all
but the neutral module. Given the relatively small size
of the neural networks, these correspond to the other
extremum of the spectrum where intricate re-use of the
same neurons results in functional strategies.

One could conclude that, in this experimental setup,
the choice between generalization and specialization
went in favor of the former. Indeed, the totipotent
module type is not only the most frequent and dom-
inant but is also the only one which has clear benefits.
On the last row of Figure 6, its median fitness is drasti-
cally higher than any other module type of comparable
frequency. It is, however, unclear whether this is be-
cause module All is inherently beneficial or because it
is more easily paired with other compatible modules.

To get a better picture of the kind of modular
neural networks induced by this communication task,
we present, in Figure 7, a sample taken from the
best-performing individuals. The two outermost cases
exhibit a totipotent module although with different
topologies as 7a is almost fully connected while 7d relies
on more heavily connected components. This is partic-

ularly visible for module V Ae (red, blue, aquamarine)
which processes all inputs but the receiver’s audition.
Such partitioning is even more pronounced for 7c which
relies on both types of sense-specific modules in com-
bination with the None module. In this case, inputs
are either routed to the dedicated neurons or the more
general ones, contained by the neutral module.

Furthermore, there is evidence of emergent pathways
for instance in the aforementioned peripherical module
of 7d. While in most ANNs all neurons tend to be di-
rectly connected to the inputs, this module can only
work on data pre-processed by other modules. This ef-
fect is drastically more present in 7b which combines
multiple favorable characteristics such as its size (544
neurons) or the presence of all input-specific modules.
More interestingly, it possesses the deepest neural net-
work with a maximum of 5 connections between an in-
put and an output. Taken together with the large neu-
tral module, such features hint at more elaborate data
processing capabilities not discovered with the current
implementation of the VfMRI procedure.

Neural overlap
To further investigate how ANNs allocate neurons be-
tween the different senses and roles, we turn our at-
tention to the underlying structures. More specifically,
we want to measure how frequently a neuron is used
for different types of input processing. To this end, we
define three metrics SepV , SepA and SepR as follows.

SepV =
∑

n 1V ∗
e

(n) ⊕ 1V ∗
r

(n)∑
n 1V ∗

e
(n) ∨ 1V ∗

r
(n) (3)

SepA =
∑

n 1A∗
e
(n) ⊕ 1A∗

r
(n)∑

n 1A∗
e
(n) ∨ 1A∗

r
(n) (4)

SepR =
∑

n
(¬ ∨t∈{e,r} 1V ∗

t
(n)) ∧ (¬ ∨t∈{e,r} 1A∗

t
(n))∑

n
∨s∈{V ∗

e ,V ∗
r ,A∗

e ,A∗
r }1s(n)

(5)

where 1s(n) is the indicator function defining whe-
ther neuron n reacts to stimulus s. The first two mea-
sure whether either sense is implemented on different
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Figure 8: Distributions of the three separation metrics
SepV , SepA and SepR. Individuals are homogeneous
in terms of visual separation while there is a marked
trend for re-use in auditory perception and role-specific
processing. For comparison, individuals from Figure 7
are highlighted.

neurons for the different roles while the last one ex-
pands this measure to encompass both senses at the
same time. This way we can study which strategy was
preferred by evolution as summarized by Figure 8.

A cursory examination of the first case shows that
individuals have not converged towards any side of the
spectrum from which we can deduce that visual sep-
aration was globally neutral in terms of evolutionary
advantage. Conversely, the auditory processing paints
a drastically different picture with half the runs exhibit-
ing no separation at all, i.e. they actively selected net-
works that re-used the same neurons for both agents’
audition. This is consistent with previous observations
that both emitter and receiver tend to fall into an ex-
tended dialog instead of devising short context-specific
communication protocols. In a broader context, the
neural implementation of role-specific tasks mostly falls
on the side of reuse rather than specialized processing.

The modular ANNs from Figure 7 follow similar dis-
tributions: uniform for the vision and skewed towards
lower values for audition and role. However, only the
most extreme strategies (b,c) remain in a very narrow
area. Indeed, the more moderate (a,d) have variable
neural separation commensurate with the whole sample
dynamics. As can be seen on the modular ANNs, they
have separate vision-related modules and aggregated
audition-related modules including the totipotent.

Conclusion
In this experiment, we used virtual robots to study
whether NeuroEvolution would lead to specialization or
generalization. These robots were embedded in a phys-
ical 2D environment which they perceived by simulated
retina-based vision and frequential hearing. Locomo-
tion and vocalization were their sole mode of interacting
with said environment.

Placed in disjoint cells, two clones had to devise a
communication scheme that allowed one agent to trans-

mit color information to its teammate in order to reach
the correct target. Broadly speaking, the experiment
showed surprising results, with initial steps being com-
pleted much faster than expected, although tackling all
four sub-tasks was a harder challenge. The resulting
ANNs were of limited size, potentially as a runaway op-
timization response to the energy cost associated with
neural and axonal activities.

While solving the task, these ANNs developed emer-
gent topologies to process environmental data. Thanks
to the VfMRI procedure, we extracted those structures
to investigate whether different senses/roles were imple-
mented on different neurons. The relationship between
frequency, occupation and fitness highlighted diverging
dynamics: visual and auditory processing were, indeed,
specialized (H1 accepted) while role-related modules
were not (H2 rejected). Complementarily, totipotent
modules were found in large quantity, in individuals
with generally higher fitness. By further investigating
this dual tendency for specialization and generalization
we found, through separation metrics, that auditory
processing was markedly implemented on identical neu-
rons. To a lesser extent, this also held true for the roles
(emitter/receiver) while no clear trend were detected for
visual inputs. Thus, this context highlights the balanc-
ing act between specialization and generalization with
neither being the sole optimal solution.

In future work, a promising direction would be to
force the receiver to be mute. While reducing the com-
plexity of the system this should promote the emergence
of more object-related, interpretable sounds, as shown
by preliminary experiments. Additionally, a third color
could also be incorporated into the experimental proto-
col to stimulate the emergence of more complex behav-
ior and better understand the neural implementation of
vocal communication.

Moreover, the observed emergence of “multi-layer”
ANNs paves the way toward deeper input processing,
allowing more complex environments to be tackled. At
the same time, this would require extending the VfMRI
procedure so that nth-order modules could be detected,
for instance through iterative mapping of artificial in-
puts from (n-1)th-order modules. In this manner, Vir-
tual functional Magnetic Resonance Imaging could be
applied to an even broader range of tasks and neural
representations including Deep Neural Networks and
Embodied Robotics.
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